Jumat, 26 November 2010

China’s energy drive: back on track

Beijing has set an ambitious target to reduce the intensity of energy use in China - and so desperate is the desire to meet it that in one town in Hebei thousands of traffic lights were shut off for more than a week this year.
Now, after months of similar extreme power cuts, Beijing’s bureaucrats are able to breathe a sigh of relief: it looks like China is back on track to meet the goal of reducing energy use per unit of gross domestic product by 20 per cent from where it was five years ago.
That was the word from a top climate change official, Xie Zhenhua, who said China has seen a three per cent reduction in energy intensity during the first three quarters of 2010.
China is largest consumer of energy in the world by some measures and it has been scrambling to achieve the 20 per cent reduction by the end of this year. The goal was set during the last five-year plan (2006 to 2010) and has become a national priority, leading local authorities to shut down factories, close mills and in some cases cut power to their districts in an effort to meet the goal.
Wednesday’s announcement was the first concrete signal that the extreme measures adopted this autumn are paying off. In some counties, the planned power outages have cut into the balance sheets of local businesses and prompted local business owners to protest. Across the country, the rush to buy diesel generators to fuel factories and businesses through the power cuts has sparked a diesel shortage and sent generator prices up.
According to Xie, the energy goal is now within reach and China has already surpassed its emissions goal. China reduced energy intensity by 15.6 per cent during the first four years of the current five-year plan, but was thrown off track by the infrastructure-intensive stimulus at the beginning of this year.
In the first six months of this year, China’s energy intensity actually increased by 0.09 per cent, reversing the trend of the previous four years and throwing energy officials into a panic. But now, according to Xie, energy intensity fell by three per cent in the first nine months of the year, implying a very sharp drop in energy use in the third quarter of the year.
Xie says that China’s spending on energy and emissions reduction efforts during the current five-year plan totals Rmb 1,600 bn, with Rmb 200 bn of that coming from government spending. As part of the energy saving efforts, 100m tonnes of capacity had been shuttered at old steel plants and 260m tonnes of cement-producing capacity had been taken off line.
“I don’t think it will be that challenging for China to meet the energy goal now because they’ve done all these crazy things to the system,” says Zhou Xizhou, associate director at IHS Cera in Beijing. Reaching the energy target in the next five-year plan might be more difficult though since China would be starting from an artificially low base at the end of this year, he noted.

Impacts of climate change


Business risks
Meeting growing energy demand will require navigating a host of risks — technological, political, regulatory, social, environmental, and physical. Since ExxonMobil’s operations include activities in a variety of environments, severe weather events can disrupt supplies or interrupt operations. While current scientific understanding of climate change provides limited guidance on how the risks of weather extremes may change in the future, we manage these risks through robust design and operations contingency planning.
Due to concerns over the risks of climate change, a number of countries have adopted, or are considering the adoption of, regulatory frameworks to reduce GHG emissions, including cap and trade regimes, carbon taxes, increased efficiency standards, and incentives or mandates for renewable energy. When adopted, related requirements could increase our compliance costs for monitoring or reducing GHG emissions, raise the cost of energy across the economy, and shift energy demand to less carbon-intensive energy sources. International accords and underlying regional and national regulations for GHG reduction are evolving with uncertain timing and outcome, making it difficult to predict their business impact. We test a range of potential costs for energy-related GHG emissions in our long-term Outlook for Energy which is used for assessing the business environment and in our investment evaluations. Through 2030, the Outlook anticipates significant growth in global energy demand including oil and natural gas. Natural gas is expected to be the fastest growing major energy source, and ExxonMobil is well-positioned to help meet this demand.
Public policy debate
ExxonMobil is engaged in the public discussion to create national and international policies to address climate change risks. Recognizing the long-term nature of these risks, the climate policy debate has shifted from a focus on near-term emissions targets to include targets for longer-term stabilization of GHG concentrations.
The international negotiations to develop a post-2012 framework for international cooperation have highlighted many aspects of the climate policy challenge. Steps to reduce risks will require the broad deployment of currently noncommercial technologies, requiring massive investments globally. Designing equitable policies to limit emissions and to create acceptable frameworks for the massive investments and financial transfers has been, and will continue to be, contentious.
Our scientists, engineers, and management participate in research and assessment activities such as the Intergovernmental Panel on Climate Change (IPCC). We also work with legislative and regulatory processes around the globe to assist in the design of practical, cost-effective ways to implement climate policies.
Carbon tax
Throughout the world, policymakers are considering a variety of legislative and regulatory options to address the risks of climate change. ExxonMobil believes that any cost policymakers put on GHG emissions should be uniform across the economy and predictable over time. It is important to allow this cost to drive the development and selection of steps to reduce emissions, rather than having governments select solutions. We believe an economy-wide, revenue-neutral GHG tax is the most transparent, efficient, and cost-effective way to establish such a cost at a national level. This tax, sometimes referred to as a carbon tax, could be tailored to specific national circumstances and could form a transparent basis for equitable international efforts to mitigate emissions. In any national program, the initial tax profile should be periodically adjusted to reflect new scientific knowledge of climate change risks, technological developments, policy experience, and the evolution of international cooperation.

Algae biofuels



Algae Biofuels
View Case StudyView Performance Overview
Meeting the world’s growing energy demands will require a multitude of sources. Biofuel from algae could be a meaningful part of the solution in the future because of its potential as an economically viable, low emissions transportation fuel.  
Together ExxonMobil and Synthetic Genomics, Inc. (SGI) announced in July 2010 the opening of a new greenhouse facility to enable the next level of research and testing in our algae biofuels program. This greenhouse, located in La Jolla, California, is part of our ongoing commitment to advance breakthrough energy technologies to help address the world’s long term energy challenges.
In July 2009, ExxonMobil joined with Synthetic Genomics, Inc (SGI) to launch new program to research and develop next-generation biofuels from photosynthetic algae. The opening of the greenhouse is an important milestone because it provides the next level in scale up from a laboratory setting to an environment that better reflects real-world conditions for algae production.  SGI and ExxonMobil researchers are using the facility to test whether large-scale quantities of affordable fuel can be produced from algae. 
In the greenhouse, researchers from ExxonMobil and SGI will examine different growth systems for algae, such as open ponds and closed photobioreactors.  We will evaluate various algae, including both natural and engineered strains, in these different growth systems under a wide range of conditions, including varying temperatures, light levels and nutrient concentrations. We will also conduct research into other aspects of the algae fuel production process, including harvesting and bio-oil recovery operations.
Since ExxonMobil and SGI announced the algae biofuel program last July, researchers have made substantial progress, including:
  • Isolating and/or engineering a large number of candidate algal strains and developing growth conditions under which these strains could be made more productive; 
  • Identifying and testing some of the preferred design characteristics of the different production systems; and
  • Initiating life cycle and sustainability studies to assess the impact of each step in the process on greenhouse gas emissions, land use and water use.
The next major milestone in the program, expected in mid-2011, is the opening of an outdoor test facility.
Advantages of algae
ExxonMobil has been engaged in a long-term effort to examine the potential of next generation and renewable fuels.  After considerable study, we have concluded that biofuels from photosynthetic algae have potential benefits and advantages.
  • Algae can be grown using land and water unsuitable for plant or food production, unlike some other first- and second-generation biofuel feedstocks.
  • Select species of algae produce bio-oils through the natural process of photosynthesis — requiring only sunlight, water and carbon dioxide. 
  • Growing algae consume carbon dioxide; this provides greenhouse gas mitigation benefits.
  • Bio-oil produced by photosynthetic algae and the resultant biofuel will have molecular structures that are similar to the petroleum and refined products we use today. 
  • Algae have the potential to yield greater volumes of biofuel per acre of production than other biofuel sources. Algae could yield more than 2000 gallons of fuel per acre per year of production. Approximate yields for other fuel sources are far lower:
    - Palm — 650 gallons per acre per year
    - Sugar cane — 450 gallons per acre per year
    - Corn — 250 gallons per acre per year
    - Soy — 50 gallons per acre per year
  • Algae used to produce biofuels are highly productive.  As a result, large quantities of algae can be grown quickly, and the process of testing different strains of algae for their fuel-making potential can proceed more rapidly than for other crops with longer life cycles. 
  • If successful, bio-oils from photosynthetic algae could be used to manufacture a full range of fuels including gasoline, diesel fuel and jet fuel that meet the same specifications as today’s products.
Under the program, if research and development milestones are successfully met, ExxonMobil expects to spend more than $600 million, which includes $300 million in internal costs and potentially more than $300 million to SGI.

Investing in a Renewable Energy Future



Where oil refineries once stood in California and Wyoming, Chevron has begun testing seven emerging photovoltaic solar technologies, and the company's first wind farm recently started churning out power for the local grid.
Meanwhile at a Mississippi tree farm, a forest-products company, under a research joint venture with Chevron, grows switchgrass to advance second-generation biofuels that use cellulose instead of corn or other food crops. And in Indonesia and the Philippines, Chevron taps boiling brine from deep in the earth to generate more than 1,250 megawatts of electricity for thousands of homes, making Chevron the world's largest geothermal power producer.

Promise and Pragmatism

Renewable energy technologies such as these are hailed as sustainable alternatives, full of promise to provide clean, new energy and cut carbon emissions. But because of major technical hurdles — such as scalability, performance and costs — as well as market-based barriers, broader adoption can't happen overnight.
So Chevron pursues a strategy to promote energy efficiency while exploring renewables as a viable enterprise, according to John McDonald, Chevron vice president and chief technology officer.

World Energy Demand

"The world is going to need every molecule and electron of energy from all sources," said McDonald. "Our focus is on new sources that are feasible from a business standpoint, such as geothermal power and energy efficiency. The key is to find and develop those technologies that show promise not just in the laboratory but in the commercial marketplace as well."
Global demand for oil is approaching 88 million barrels per day, according to a recent International Energy Agency (IEA) report. Indeed, from 2007 to 2030, demand for energy of all kinds is forecast to increase nearly 40 percent, as reported in IEA's 2009 World Energy Outlook. Fossil fuels will meet most of that new demand, but IEA forecasts that renewables can increase their contribution in the years ahead.

Chevron's Strategy

"Renewables can play an important role in the world's future energy mix if we can unlock the secrets to providing them on a very large scale and at affordable prices," said Des King, president of Chevron Technology Ventures, the company's Center of Excellence for renewables strategy, research and development.
As part of its major business strategies, Chevron seeks to integrate renewable energy technologies into its business — including installing them at former operations sites — to improve its own operations, with a goal of reducing both costs and greenhouse gas emissions.
Chevron funds research and alliances with universities and government research facilities, including the U.S. Department of Energy's National Renewable Energy Laboratory, to evaluate, test and apply these technologies. The company is actively involved in developing selected renewables — such as biofuels — that could complement its established capabilities in refining and fuel distribution.
Additionally, through Chevron Technology Ventures, Chevron's venture capital arm, the company invests in emerging technologies and promising startups.
"We make sound investments in research and testing in real-world applications to help solve tomorrow's energy challenges," said King.

Driving Energy Efficiency

Some technologies are ready now. Chevron Energy Solutions Co. (CES) is one of the United States' leading energy efficiency and renewable energy services companies and the nation's largest developer of solar installations for education facilities. CES develops and builds sustainable energy projects that increase energy efficiency and renewable power, reduce energy costs and deliver reliable, high-quality energy. Consistent with Chevron's renewable energy and energy efficiency strategy, CES helps its customers, including Chevron, reduce their own energy use and find ways to put renewable power to work.
"Energy efficiency is the cheapest, cleanest and most plentiful source of 'new' energy we have," said Jim Davis, president of CES. Citing a McKinsey & Co. study, he noted that with a positive investment climate and a national commitment, the United States could reduce energy consumption up to 23 percent by 2020. "That would save about $1.2 trillion and reduce greenhouse gas emissions by an amount equal to that produced by all the nation's cars and trucks."

$1 billion in Energy Savings

CES has developed hundreds of projects that in aggregate are reducing customers' energy costs by nearly 30 percent on average, saving a total of more than $1 billion and reducing greenhouse gas emissions by more than 3 million metric tons since 2000. Customers include U.S. cities, counties, states and the federal government, school districts, community colleges, universities and correctional facilities.
Meanwhile, a corporatewide initiative has lowered Chevron's own energy consumption per unit of output by 31 percent since 1992, the baseline year. And the company has endowed the Chevron Chair in Energy Efficiency at the University of California, Davis, committing $2.5 million to help lead to the commercialization of new energy-saving technologies.

Integrating Renewables

Pursuing beneficial reuse, Chevron this year started generating renewable power — enough for about 4,400 homes — with 11 wind turbines on a former oil refinery site near Casper, Wyoming.
At a similar site near Bakersfield, California, Chevron's Project Brightfield is testing seven emerging photovoltaic technologies to see which performs best. The results will help Chevron evaluate solar technologies for a variety of uses across the company. Power from the arrays will meet a small share of electricity needs at a Chevron oil field.
"This is one of the first projects to demonstrate solar technology on a reclaimed industrial site," said Jerry Lomax, Chevron Technology Ventures vice president for emerging energy. "We hope what we learn here will be a bridge to a future with more renewables."
Meanwhile, at a Chevron Mining Co. reclamation project near Questa, New Mexico, the company is building a concentrating solar power installation. The largest of its kind in the United States, the 1-megawatt facility will use lenses that intensify strong alpine sunlight to feed high-efficiency photovoltaic cells.
"The demonstration will help us understand the benefits of this technology and determine its applicability in other Chevron operations and properties," said King.

Seeking Biofuels Synergies

The company is pursuing another promising renewable energy prospect: biofuels.
For decades, ethanol — an alcohol fuel made from corn and sugar cane — has been successfully blended into gasoline in large volumes in the United States, Brazil and other countries. But first-generation biofuels feedstocks often compete for food needed by humans and livestock.
Chevron's biofuels research alliances focus on new feedstocks — such as nonedible plant materials and algae — and on process technologies for converting this nonfood biomass into transportation fuels at commercial scale.

From Seed to Scale

One example of a promising commercial partnership is Catchlight Energy LLC, Chevron's 50-50 joint venture with forest-products giant Weyerhaeuser Co. Catchlight is working to commercialize advanced biofuels made from forest-based biomass. Formed in 2008, Catchlight combines Weyerhaeuser's forest biomass expertise with Chevron's fuel processing and distribution capabilities to form a potential "from seed to scale" advanced biofuels supply chain. Biomass production could include intercropping — growing and harvesting biomass between tree rows in Weyerhaeuser's vast, managed forests.
"It's especially important to assess a variety of biomass sources because enormous quantities will be required to meet the potential demand for biofuels," said King. "And any new biomass initiatives need to incorporate the three major components of sustainability — environmental protection, economic feasibility and the minimization of social impact."

copyright www.chevron.com

Rabu, 24 November 2010

Biomassa Sebagai Energi Alternatif


Masalah lingkungan sebenarnya memiliki solusi yang berasal dari lingkungan juga. Problem gas rumah kaca dan krisis energi misalnya, bisa dijawab dengan biomassa yang asalmulanya dari alam. Bagaimana bisa?
Gas rumah kaca yang disebabkan oleh bahan bakar fosil, seperti karbon dioksida ketika dilepaskan di atmosfir, keberadaannya akan menghalangi panas yang akan meninggalkan bumi sehingga akan meningkatkan temperature bumi. Bila hal ini terjadi maka maka akan terjadi perubahan iklim yang akan mempengaruhi kualitas kehidupan di lingkungan kita. Selain disebabkan oleh CO2, gas berikut juga memiliki kontribusi dalam pemanasan global, methane (CH4) dan nitrous oksida (N2O). Pembakaran biomassa sebenarnya menghasilkan CO2 tetapi karbon dioksida yang di hasilkan akan distabilisasi dengan serap kembali oleh tumbuhan, sehingga tidak ada penimbuan karbon dioksida dalam atmosfer dan keberadaannya terus seimbang.
Pengingkatan Temperatur
Tahun 1998 merupakan tahun dimana terjadi peningkatan terbesar temperatur. Peningkatan temperatur ini menyebabkan pencairan es di kutub sehingga volume lautan meningkat dan ketingian permukaan laut meningkat 10 sampai 25 cm. Bahkan di prediksi kan tahun 2100 temperatur akan meningkat secara tajam hingga mencapai 6 derajat celcius. Dampak itulah yangmemicu terjadinya bencana alam yang akan menurunkan kualitas hidup manusia.
Untuk mencegah berbagai macam dampak dari pemanasan global, dapat dilakukan dengan mengurangi atau menghentikan proses yang paling besar dalam memicu gas rumah kaca tersebut yaitu pembakaran bahan baker fosil. Pembakaran bahan baker berkaitan erat dengan pemenuhan sector energi bagi peningkatan perekonomian suatu negara. Pengembangan biomasa sebagai sumber energi untuk substitusi bahan bakar bisa menjadi solusi untuk mengurangi beredarnya gas rumah kaca di atmosfer. Dengan penggunaan biomassa sebagai sumber energi maka konsentrasi CO2 dalam atmosfer akan seimbang. Pada waktu yang sama manusia makin menyebabkan peningkatan rumah kaca dengan penebangan hutan secara luas (deforestrisasi) sehingga mengurangi kemampuannya untuk menyerap gas CO2. disamping itu hasil hutan yang diperoleh dibakar dan menghasilkan CO2 dan beberapa partikulat matter. Konferensi tentang perubahan iklim telah dilakukan di Kyoto, Jepang pada tahun 1997.
Potensi Biomassa di Indonesia
Indonesia, Sebagai negara agraris yang beriklim tropis memiliki beberapa sumber energi terbarukan yang berpotensi besar, antara lain : energi hidro dan mikrohidro, energi geotermal, energi biomassa, energi surya dan energi angin.
Potensi biomassa yang besar di negara, hingga mencapai 49.81 GW tidak sebanding dengan kapasitas terpasang sebesar 302.4 MW. Bila kita maksimalkan potensi yang ada dengan menambah jumlah kapasitas terpasang, maka akan membantu bahan bakar fosil yang selama ini menjadi tumpuan dari penggunaan energi. Hal ini akan membantu perekonomian yang selama ini menjadi boros akibat dari anggaran subsidi bahan bakar minyak yang jumlahnya melebihi anggaran sektor lainnya.
Energi biomassa menjadi penting bila dibandingkan dengan energi terbaharukan karena proses konversi menjadi energi listrik memiliki investasi yang lebih murah bila di bandingkan dengan jenis sumber energi terbaharukan lainnya. Hal inilah yang menjadi kelebihan biomassa dibandingkan dengan energi lainnya. Proses energi biomassa sendiri memanfaatkan energi matahari untuk merubah energi panas menjadi karbohidrat melalui proses fotosintesis yang selanjutnya diubah kembali menjadi energi panas.
Konversi Biomassa
Penggunaan biomassa untuk menghasilkan panas secara sederhana sebenarnya telah dilakukan oleh nenek moyang kita beberapa abad yang lalu. Penerapannya masih sangat sederhana, biomassa langsung dibakar dan menghasilkan panas. Di zaman modern sekarang ini panas hasil pembakaran akan dikonversi menjadi energi listrik melali turbin dan generator. Panas hasil pembakaran biomassa akan menghasilkan uap dalam boiler. Uap akan ditransfer kedalam turbin sehingga akan menghasilkan putaran dan menggerakan generator. Putaran dari turbin dikonversi menjadi energi listrik melalui magnet magnet dalam generator. Pembakaran langsung terhadap biomassa memiliki kelemahan, sehingga pada penerapan saat ini mulai menerapkan beberapa teknologi untuk meningkatkanmanfaat biomassa sebagai bahan bakar. Beberapa penerapan teknologi konversi yaitu :
  • Densifikasi
Praktek yang mudah untuk meningkatkan manfaat biomassa adalah membentuk menjadi briket atau pellet. Briket atau pellet akan memudahkan dalam penanganan biomassa. Tujuannya adalah untuk meningkatkan densitas dan memudahkan penyimpanan dan pengangkutan. Secara umum densifikasi (pembentukan briket atau pellet) mempunyai beberapa keuntungan (bhattacharya dkk, 1996) yaitu : menaikan nilai kalor per unit volume, mudah disimpan dan diangkut, mempunyai ukuran dan kualitas yang seragam.
  • Karbonisasi
Karbonisasi merupakan suatu proses untuk mengkonversi bahan orgranik menjadi arang . pada proses karbonisasi akan melepaskan zat yang mudah terbakar seperti CO, CH4, H2, formaldehid, methana, formik dan acetil acid serta zat yang tidak terbakar seperti seperti CO2, H2O dan tar cair. Gas-gas yang dilepaskan pada proses ini mempunyai nilai kalor yang tinggi dan dapat digunakan untuk memenuhi kebutuhan kalor pada proses karbonisasi.
  • Pirolisis
Pirolisis atau bisa di sebut thermolisis adalah proses dekomposisi kimia dengan menggunakan pemanasan tanpa kehadiran oksigen. Proses ini sebenarnya bagian dari proses karbonisasi yaitu roses untukmemperoleh karbon atau aran, tetapi sebagian menyebut pada proses pirolisis merupakan high temperature carbonization (HTC), lebih dari 500 oC. Proses pirolisis menghasilkan produk berupa bahan bakar padat yaitu karbon, cairan berupa campuran tar dan beberapa zat lainnya. Produk lainn adalah gas berupa karbon dioksida (CO2), metana (CH4) dan beberapa gas yang memiliki kandungan kecil.
  • Anaerobic digestion
Proses anaerobic igestion yaitu proses dengan melibatkan mikroorganisme tanpa kehadiran oksigen dalam suatu digester. Proses ini menghasilkan gas produk berupa metana (CH4) dan karbon dioksida (CO2) serta beberapa gas yang jumlahnya kecil, seperti H2, N2, dan H2S. Proses ini bisa diklasifikasikan menjadi dua macam yaitu anaerobic digestion kering dan basah. Perbedaan dari kedua proses anaerobik ini adalah kandungan biomassa dalam campuran air. pada anaerobik kering memiliki kandungan biomassa 25 – 30 % sedangkan untuk jenis basah memiliki kandungan biomassa kurang dari 15 % (Sing dan Misra, 2005).
  • Gasifikasi
Gasifikasi adalah suatu proses konversi untuk merubah material baik cair maupun pada menjadi bahan bakar cair dengan menggunakan temperatur tinggi. Proses gasifikasi menghasilkan produk bahan bakar cair yang bersih dan efisien daripada pembkaran secara langsung, yaitu hidrogen dan karbon monoksida. Gas hasil dapat di bakar secara langsung pada internal combustion engine atau eaktor pembakaran. Melalui proses Fische-Tropsch gas hasil gasifikasi dapat di ekstak menjadi metanol.
Political Will
Semua potensi tersebut tidak bernilai tanpa adanya dukungan dan political will dari pemerintah serta masyarakat luas. Pembentukan tim nasional pengembangan bahan bakar nabati (BBN) dengan menerbitkan blue print dan road map bidang energi untuk mewujudkan pengembangan BBN merupakan langkah yang strategis sehingga dapat dicapai kemandirian energi melalui pengembangan biomassa. Peran serta masyarakat akan sangat membantu dalam pengimplemetasian pengembangan tanaman penghasil bioenergi, sehingga pada akhirnya bangsa ini mampu keluar dari krisis energi dengan pasokan energi bahan bakar nabati yang berkelanjutan
Referensi
  1. Singh, R.K and Misra, 2005, Biofels from Biomass, Department of Chemical Engineering National Institue of Technology, Rourkela
  2. Presiden Republik Indonesia, 2006, Peraturan Presiden Republik Indonesia Nomor 5 Tahun 2006 Tentang Kebijakan Energi Nasional, Jakarta
  3. Prihandana, R. dkk, 2007, Meraup Untung dari Jarak Pagar, Jakarta , P.T Agromedia Pustaka
  4. Tim Nasional Pengembangan BBN, 2007, BBN, Bahan Bakar Alternatif dari Tumbuhan Sebagai Pengganti Minyak Bumi
  5. Daugherty E.C, 2001, Biomass Energy Systems Efficiency:Analyzed through a Life Cycle Assessment, Lund Univesity.
  6. Instruksi Presiden, Instruksi Preiden No 1 tahun 2006 tertanggal 25 januari 2006 tentang penyediaan dan pemanfaatan bahan bakar nabati (biofuels), sebagai energi alternative, Jakarta.
  7. Direktorat Jenderal Listrik dan Pemanfaatan Energi, 2004, Potensi energi terbaharukan di Indonesia, Jakarta
  8. Vest, H., 2003, Small Scale Briquetting and Carbonisation of Organic Residues for Fuel, Infogate, Eschborn, Germany

Senin, 22 November 2010

SUMBER ENERGI ALTERNATIF

Energi yang sering kita pakai sehari-hari semakin lama semakin berkurang atau menipis. Karena banyaknya pemakaian yang tidak terkontrol sehingga menimbulkan kelangkaan atau bahkan habis sama sekali. Untuk itu sekarang perlu dipikirkan adanya energi alternative untuk pengganti dari energi yang biasanya sering dipakai . Dibawah ini adalah berbagai sumber energi alternatif yang dapat kita manfaatkan, selain akan membantu udara untuk jadi bersih, penghematan juga akan dapat dilakukan.
Angin. Tenaga kinetik angin sekarang sudah mulai banyak dipergunakan sebagai pemutar angin dengan menggunakan turbin angin baik untuk rumah maupun untuk keperluan bisnis. Satu turbin angin dapat berharga dua setengah milyar rupiah sampai dengan 10 milyar rupiah, tergantung dari ukurannya. Tapi satu turbin saja dapat menghidupi sampai dengan tiga puluh rumah, tapi karena angin tidak selalu bertiup, tenaga cadangan harus selalu tetap tersedia, misalnya dari PLN.
Matahari. Negara kita yang kaya matahari tampaknya sangat cocok menggunakan sumber daya ini. Coba gunakan atap yang terbuat dari sistem tenaga surya yang disebut sel fotovoltaik. Harganya memang tidak murah, untuk atap ukuran standar dapat mencapai 200 juta rupiah. Tapi sistem ini sangat mengurangi tagihan listrik pemilik rumah, apalagi dengan sistem tagihan PLN yang ada sekarang.
Biodiesel. Bahan dasar bahan bakar ini dibuat dari tumbuhan seperti kedelai, kelapa dan sebangsanya, biodiesel adalah bahan bakar non-toxic yang dapat dicampurkan dengan minyak diesel biasa atau digunakan sebagaimana adanya untuk mengurangi emisi.
Nuklir. Dengan bahan bakar uranium, logam yang ditemukan di bebatuan, dan diproses di reaktor nuklir, energi panas yang ada akan digunakan sebagai bahan untuk memutar turbin yang ada. Sumber energi ini tidak melepaskan emisi gas rumah kaca dan tidak malah. 20% sumber listrik di Amerika sudah berbahan bakar nuklir.
Hidrogen. Bagaimana caranya anda menciptakan sumber daya yang sama sekali tidak mengeluarkan apapun kecuali air bersih? Jawabannya adalah sel bahan bakar hidrogen. Masalah yang ada sekarang adalah untuk memisahkan hidrogen dari bentuk komposisinya, misalnya rantai karbon atau air, berarti menggunakan sumber daya lainnya. Penyimpanan hidrogen juga tidak mudah, karena kepadatannya sangat rendah, maka sangatlah sulit untuk menempatkan hidrogen dalam jumlah besar dalam ruangan yang sempit. Oleh karena itulah, walaupun banyak kendaraan mulai menggunakan hidrogen sebagai bahan bakarnya, masih sulit didirikan stasiun pengisian hidrogen.

Krisis Energi dunia

Sebuah ramalan telah lahir dan akan memengaruhi masa depan setiap penghuni bumi ini.

Ramalan ini bisa diungkapkan dalam enam kata yang begitu dahsyat : "WE ARE RUNNING OUT OF ENERGY" (saat ini kita sedang kehabisan energi).

Berdasarkan teknologi serta tren produksi dan konsumsi yang ada saat ini, kita sebagai sebuah peradaban akan kehabisan cadangan minyak untuk 25 - 30 tahun ke depan (kurang lebih tahun 2040).

Ramalan-ramalan lain, yang dikeluarkan berdasarkan data-data pendukung, menjurus pada kesimpulan tak terbantahkan : "kalaupun kita membangun reaktor nuklir,pembangkit tenaga surya dan angin, tanaman hidro elektrik dan sumber-sumber energi lain yang terbarukan, toh Kita tetap TIDAK akan mampu memenuhi pesatnya PERMINTAAN ENERGI dalam 30 tahun ke depan".

Masalahnya, kita tidak hanya sedang kehabisan energi untuk menggerakan mesin dunia ini di masa depan tetapi kalaupun kita sekarang segera membangun fasilitar penghasil energi baru, dari listrrik,nuklir , tetap saja kita tidak akan mampu memenuhi kebutuhan yang makin besar !

F.Y.I , Akibat dari krisis Energi : mulai dari Demokrasi yang akan berada di ujung tanduk. Kapitalisme yang akan goyang, hingga pada akhirnya akan meluluhlantakkan kemajuan, pertumbuhan, dan bahkan Peradaban Manusia itu sendiri ! !
 
MASA DEPAN ENERGI

enam syarat bagi sumber-sumber energi masa depan yang akan mengakhiri kebiasaan kita memakai minyak bumi dan akan melestarikan bumi agar tetap layak dihuni :
- Berlimpah
- Andal
-Terbarukan
- Bersih
- Aman.


Sekarang pertanyaan untuk kita dan mungkin akan menggugah seluruh umat manusia adalah :

"Bagaimana caranya agar kita tidak kehabisan energi ?"

Planet Baru "Mirip Bumi" Berlimpah Air


Planet Baru Mirip Bumi Berlimpah Air
Seorang mahasiswa Astronomi ITB memasang alat penglihat teropong bintang yang dapat menjangkau hingga jarak 200 mil pada ITB Expo di Kampus ITB, Bandung, Jawa Barat, Sabtu (22/03/08). (ANTARA / Rezza Estily/ss/ama)
Jakarta (Antara News) - Penemuan "dunia tirta" baru (planet serupa Bumi yang berlimpah air) yang mengorbiti satu bintang dalam jarak 40 tahun cahaya menjadi planet pertama yang diketahui mirip Bumi dan membuat manusia menjadi cukup dekat untuk bisa mengendus atmosfernya, kata para astronom seperti dikutip jurnal Nature.

Dinamai GJ 1214b, ukuran planet ini hanya sekitar 2,7 kali ukuran Planet Bumi dengan massa kira-kira 6,5 kali lebih berat dari Bumi.

Berdasarkan berat jenisnya, para ilmuwan mengira GJ 1214b mengandung 3/4 air likuid dengan inti padat dari besi dan nikel serta atmosfer hidrogen dan helium yang merupakan mirip dengan Bumi.

Namun dalam banyak cara lainnya, planet ini adalah "binatang kejam yang sangat berbeda" dari Bumi yang kita tinggali, kata para ilmuwan.

"Pada dasarnya ini adalah satu samudera luas," kata kepala peneliti David Charbonneau dari Pusat Astrofisika Smithsonian, Universitas Harvard, Cambridge, Massachusetts.

"(Di planet ini) tidak ada satu pun benua yang mengambang di atas atau menyeruak dari air."

Lebih dari itu, GJ 1214b lebih panas dibandingkan Bumi dan atmosfernya sepuluh kali lebih tebal dibandingkan planet kita, kata para peneliti.

Hal ini mungkin membuat apapun sulit untuk hidup seperti selama ini kita ketahui. Untuk para pemula, tekanan atmosfer terhadap permukaan planet itu besar sekali dan cahaya yang sangat sedikit sulit menembus kabut demi mencapai samudera planet tersebut.

Planet baru menyerupai Bumi ini tetaplah sangat asing.

Planet Super-Earth baru itu ditemukan dengan menggunakan proyek MEarth, satu unit perangkat teleskop kecil berbasis di Bumi yang digunakan untuk mendeteksi perubahan dari menit ke menit dari kekuatan cahaya bintang-bintang merah nan redup yang disebut dengan M dwarfs (bintang cebol).

Kelipan periodik cahaya bintang bisa disebabkan oleh planet-planet yang secara terpisah transit atau mengitari bintang-bintangnya. Karena bintang cebol M dwarfs lebih buram ketimbang bintang-bintang seperti Matahari, maka menjadi lebih mudah menjejak pengurangan kekuatan cahaya yang disebabkan oleh planet-planet seukuran Bumi yang lebih kecil massanya.

Kendati GJ 1214b tidak langsung terlihat, perubahan pasti dalam cahaya bintang karena jejak perjalanannya, memungkinkan para astronom bisa menakar ukuran dan massa planet tersebut, yang nantinya menawarkan petunjuk-petunjuk terhadap komposisi planet itu.

Dan karena dunia tirta begitu dekat ke Bumi, demikian Charbonneau, teleskop optik yang berbasis di antariksa seperti Hubble atau Kepler bisa seharian digunakan untuk mengendus kandungan kimia pasti dari atmosfer planet serupa Bumi itu.

"Sejumlah cahaya dari bintang cebol itu menembus atmosfer planet serupa Bumi tersebut (seperti cahaya Matahari menembus Bumi), dan menempel pada fitur-fitur atom dan molekul apa saja yang ada," kata Charbonneau.

Secara keseluruhan, penemuan ini adalah "pencapaian yang menjadi tonggak" yang bisa menutup kesenjangan ilmiah dalam planetologi, kata Greg Laughin, ilmuwan astrofisika pada Universitas California, Santa Cruz, yang tidak terlibat dalam penelitian itu.

"Saya selalu membayangkan seperti apakah bentuk planet bermassa enam kali dari Bumi itu. Kini kita mengetahuinya. Planet itu benar-benar sangat berbeda dari sistem tata surya kita," kata Laughlin. (*)

Sumber: laman National Geographic dan Jurnal Nature.
COPYRIGHT © 2009

Kita Di Ambang Krisis Energi

Assalamualaikum,,

Salam Energi Baru,,
Kita di ambang krisis energi,,itu judul yang saya tuliskan di atas ,,
kenapa saya menuliskan judul seperti itu??.
Hampir sebagian besar dari kita sudah sering mendengar di berita baik media cetak ataupun media televisi , bahwa bumi kita ini sedang menghadapi sebuah goncangan besar,,sedang menghadapi perubahan besar-besaran ,, diantaranya perubahan iklim ,, perubahan struktur bumi (contohnya adalah mencairnya es di kutub yg menyebabkan volume air di bumi ini meningkat),,Banyaknya terjadi bencana baik gempa,banjir,angin topan,serta perubahan moral dan etika masyarakat.

Bila di tinjau lebih dalam,,bencana dan perubahan-perubahan yang terjadi pada bumi adalah akibat dari eksploitasi bumi besar-besaran,mulai dari tambang minyak,batu bara,dan bahan-bahan penghasil energi lainnya.Faktanya persedian minyak sebagai sumber energi pokok yang di pakai di bumi saat ini tidak cukup untuk 70 tahun mendatang,lalu pertanyaannya ,"Sumber energi apa yang di gunakan oleh generasi penerus kita 70 tahun nanti ?" , "Apakah kita akan terus bergantung pada minyak dan bahan tambang lainnya?","Atau ada penyelesaian lain?"

Oleh karena itu dengan kemampuan saya yang sangat terbatas , saya ingin membuka sebuah forum dimana kita bisa saling berbagi ide-ide,tentang permasalahan-permasalahan yang terjadi di bumi kita saat ini.

Semoga blog ini sesuai dengan judul : PLANET 81 yaitu planet impian , dimana sumber energinya tidak hanya bergantung pada minyak dan bahan tambang lainnya yg mudah habis,serta orang-orang yang hidup didalamnya adalah orang-orang yang cinta damai serta saling menghargai satu sama lain.
Sehingga terciptalah sebuah planet yang nyaman ,walapun tidak seindah surga tapi planet ini adalah sebuah jembatan kita menuju surga .

Amin.